Leveraging Telematics and Weather Data to Study the Productivity of Roadside Mowers

Jijo Mathew and Matt Kraushar

William Morgan, Howell Li, William Downing, Timothy Wells, James Krogmeier and Darcy Bullock
Outline

- Introduction
- Data Collection
- Data Retrieval
- Analysis/Results
- Summary
Introduction

- INDOT maintains ~11,000 centerline miles of roads
- Major activities during mowing operations include crew commute, equipment transport between locations, and maintenance
- Current reporting structure lacks the ability to track these activities
- This research proposes various performance metrics to track the daily activity of mowers
- Evaluate the efficiency of mowing operations
- Provide guidance on resource allocation, scheduling
7 Mowers

<table>
<thead>
<tr>
<th>Mower #</th>
<th>Make</th>
<th>Model</th>
<th>Year</th>
<th>Description</th>
<th>Unit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bushwhacker</td>
<td>ST-150</td>
<td>2006</td>
<td>15’ Flex-Wing Rotary Cutter</td>
<td>Center of 69</td>
</tr>
<tr>
<td>2</td>
<td>Woods</td>
<td>BW1800X</td>
<td>2017</td>
<td>15’ Flex-Wing Rotary Cutter</td>
<td>Unit 261</td>
</tr>
<tr>
<td>3</td>
<td>Woods</td>
<td>BW1800X</td>
<td>2017</td>
<td>15’ Flex-Wing Rotary Cutter</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Alamo</td>
<td>EAGLE 15</td>
<td>2005</td>
<td>15’ Flex-Wing Rotary Cutter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bushwhacker</td>
<td>7210</td>
<td>2008</td>
<td>6’ 3-Point Rotary Cutter</td>
<td>Unit 3</td>
</tr>
<tr>
<td>6</td>
<td>Schulte</td>
<td>S-150</td>
<td>2003</td>
<td>15’ Flex-Wing Rotary Cutter</td>
<td>Unit 4</td>
</tr>
<tr>
<td>7</td>
<td>Bushwhacker</td>
<td>ST-180</td>
<td>2006</td>
<td>15’ Flex-Wing Rotary Cutter</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Data Collection
- Data Retrieval
- Analysis/Results
- Summary
GPS Trackers

Super small Footprint!!

Magnetic weatherproof case with extended battery pack that lasts for ~1-2 months
Installation

- Behind driver seat

- Secured with padlocks
7 Mowers in Bluffton, Fort Wayne, IN

1 MONTH DATA COLLECTION

May/June 2018

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>R</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>
Data
Outline

❖ Introduction

❖ Data Collection

❖ Data Retrieval

❖ Analysis/Results

❖ Summary
Data Retrieval
Data Retrieval
Data Retrieval
Data stored in SQL Database
Outline

- Introduction
- Data Collection
- Data Retrieval
- Analysis/Results
- Summary
Typical day of mowing
Major Activities

- Mowing
- Transport (Equipment)
- Commute
- Maintenance
 - Greasing
 - Changing blades
 - Flat tires
 - PTO shaft
Histogram of Speed

Mowing < 6mph

Transport >= 6mph
Mileage

• On average, total daily distance covered = **21 mi**
 • 13mi mowing
 • 8 mi transport

• During one month period
 • Total distance covered by all mowers ~2000 mi
 • Mowing ~1200 mi
 • Transport ~800 mi
Area covered

\[\text{Area (in acres)} = \frac{\text{Mower Width}(ft) \times 0.90 \times \text{Distance Mowed}\ (mi) \times \frac{5280\ ft}{mi}}{43,560\ sq.\ ft/acre} \]

\(~1800\ \text{acres mowed}\)

Cumulative total area covered by all units
Periods of Activity

[Graph showing periods of activity with horizontal bars indicating work hours and a calendar for reference.]
Periods of Activity

- Commute
- Maintainance
- Idle
- Work hours
Periods of Activity

- Lunch Breaks
- Work hours
Weather Grid Overlay

• North American Land Data Assimilation System (NLDAS) from NOAA
 • Temporal Resolution – 1 hour
 • Spatial Resolution – 1/8th-degree grid. (about 14 km)

• Variety of variables:
 – Precipitation by type
 – Temperature
 – Solar flux
 – Wind speed
 – Visibility
 – Blowing snow
 – Severity index

• Road segment weather data is based on a weighted average
Weather Data

Rain intensity by hour of day

Precipitation on a hourly basis

Map covering the region from 05/09/2018 to 05/16/2018
Impact of weather on activity periods

Intensity of Rainfall (in/hr)

Inactivity due to weather

Date

Hour of Day
6 7 8 9 10 11 12 13 14 15 16 17 18

Introduction Data Collection Data Retrieval Analysis/Results
Characterization of work hours

- Introduction
- Data Collection
- Data Retrieval
- Analysis/Results

Graph showing In-Use Hours from May 27 to June 30, 2018, with categories: Maintenance, Commute, Transport, Weather, Idle, and Mowing.
Allocation of work hours

![Pie chart showing work hours allocation]

- **Mowing**: 47.39%
- **Transport**: 25.96%
- **Commute**: 9.9%
- **Maintenance**: 7.08%
- **Weather**: 6.67%
- **Idle**: 3.01%
- **Total**: ~8.2 hrs

- **Introduction**: 1 hr
- **Data Collection**: ~2.2 hrs
- **Data Retrieval**: 9.9%
- **Analysis/Results**: 7.08%
- **Summary/Findings**: 6.67%
Outline

- Introduction
- Data Collection
- Data Retrieval
- Analysis/Results
- Summary
Summary/Findings

- ~1170 miles mowed
- ~1800 acres of area covered
- Avg. daily distance = 21 miles
 - (13 mi mowing + 8 mi transport)
- ~50% time actively spent mowing on an average 9.5 hour work day

- Operational strategies to reduce the maintenance and transport
- Detailed maintenance reporting systems could also provide better insights on the downtime
INDOT – What did we learn?

Our data was similar to the limited reporting of other groups for this type of activity.

Current reporting system doesn’t capture the “other” categories

• “Other” = everything but active process of mowing.
 • Is reporting the “other” important?
 • The “other” IS part of the mowing process.
 • Example- transporting past 1-2 miles of mowed farm field or city is still something that has to occur.
 • Maintenance still has to occur.
 • The crews still need to get to and from the site and they need periodic breaks.
 • What does understanding the “other” help you with?
 • Scheduling!
 • Areas of improvement?
 • Route modification?
 • Where to start to minimize transporting/dead heading
 • Where to send what crew/machines?
 • Do we have the right equipment?
INDOT – What did we learn?

- Opportunity exists to utilize the GPS technologies to investigate other constantly moving operations
 - Plowing, painting, sweeping, herbicide applications, etc.

- Need for a simple system
 - Hard wired charging rather than batteries- the less intervention the better
 - Want for a universal system that can be used in tractors, trucks, sweepers, other equipment
 - Passive is best- reducing the need for input makes this data more accurate.

- Staff were more than receptive of using GPS- no fears of “big brother”
 - We clearly communicated what we were doing and why.

- Just because a tractor and/or mower is new doesn’t mean it won’t break down!
 - Some down time was due to some fresh off the lot equipment being set up incorrectly.
AVL device installation

9 pin connector to OBD port

Device mounted near driver side windshield
INDOT – What did we learn?

- Opportunity exists to utilize the GPS technologies to investigate other constantly moving operations
 - Plowing, painting, sweeping, herbicide applications, etc.

- Need for a simple system
 - Hard wired charging rather than batteries- the less intervention the better
 - Want for a universal system that can be used in tractors, trucks, sweepers, other equipment
 - Passive is best- reducing the need for input makes this data more accurate.

- Staff were more than receptive of using GPS- no fears of “big brother”
 - We clearly communicated what we were doing and why.

- Just because a tractor and/or mower is new doesn’t mean it won’t break down!
 - Some down time was due to some fresh off the lot equipment being set up incorrectly.
Simply putting some additional effort into the planning process over the status quo can help improve efficiencies.

- Example - past practice was to use 30 tractors but through careful planning and thoughtful resource allocation the manager determined that the same work could be accomplished with 10 (or less!) tractors.
 - Use of 15’ flexwing mowers rather than 6’ mowers whenever possible.

Having a plan in place for mechanic crew can reduce down time.

Do you have a backup? (Operator, Tractor, Mower, Tires, etc?)

Communication and teamwork make everything much easier - this went very smoothly even though we were in three geographically separate places.

The data helped us:
 - better understand staffing and equipment needs for the activity
 - bolster internal modeling data

Allowed finalization of cost benefit analysis.